某市近郊有一块大约500米×500米的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个总面积为3000平方米矩形场地,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别用表示和的函数关系式,并给出定义域;(2)怎样设计能使取得最大值,并求出最大值.
如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、. (1)求圆和圆的方程; (2)过点作的平行线,求直线被圆截得的弦的长度;
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.
求与圆外切于点,且半径为的圆的方程.
已知圆,直线,。 (1)证明:不论取什么实数,直线与圆恒交于两点; (2)求直线被圆截得的弦长最小时的方程.
已知的顶点A为(3,-1),AB边上的中线所在直线方程为,的平分线所在直线方程为,求BC边所在直线的方程.