选修4-4:极坐标与参数方程在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2交点的极坐标;(Ⅱ)求圆C1与C2的公共弦的参数方程.
在平面直角坐标系中,O为坐标原点,A、B、C三点满足 (1)求证:A、B、C三点共线; (2)已知,的最小值为,求实数的值.
函数是定义在上的偶函数,当时,;当时,的图象是斜率为,在轴上截距为-2的直线在相应区间上的部分. 求的值; 写出函数的表达式,作出其图象并根据图象写出函数的单调区间.
对于函数。 (1)若在处取得极值,且的图像上每一点的切线的斜率均不超过试求实数的取值范围; (2)若为实数集R上的单调函数,设点P的坐标为,试求出点P的轨迹所形成的图形的面积S。
已知是定义在R上的函数,其图象交x轴于A,B,C三点,若点B的坐标为(2,0),且在和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性. (1)求c的值; (2)在函数的图象上是否存在一点M(x0,y0),使得在点M的切线斜率为3b?若存在,求出点M的坐标;若不存在,说明理由;