(本小题满分12分)已知函数(1)当时,求函数的单调区间;(2)时,令.求在上的最大值和最小值;(3)若函数对恒成立,求实数的取值范围.
【改编】(本小题满分12分)已知函数.(1)求及函数的最小正周期;(2)当时,求函数的最值
(本小题满分7分)选修4—5:不等式选讲(Ⅰ)试证明柯西不等式:(Ⅱ)已知,且,求的最小值.
(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(),直线的极坐标方程为,且点A在直线上.(Ⅰ)求的值及直线的直角坐标方程;(Ⅱ)圆C的参数方程为 (为参数),试判断直线与圆的位置关系.
(本小题满分7分)选修4—2:矩阵与变换已知矩阵M=有特征向量=,=,相应的特征值为λ1,λ2.(Ⅰ)求矩阵M的逆矩阵M-1及λ1,λ2;(Ⅱ)对任意向量=,求M100.
已知为为双曲线的两个焦点,焦距,过左焦点垂直于轴的直线,与双曲线相交于两点,且为等边三角形.(1)求双曲线的方程;(2)设为直线上任意一点,过右焦点作的垂线交双曲线与两点,求证:直线平分线段(其中为坐标原点);(3)是否存在过右焦点的直线,它与双曲线的两条渐近线分别相交于两点,且使得的面积为?若存在,求出直线的方程;若不存在,请说明理由.