如图,在四棱锥中,底面是菱形,且.(1)求证:;(2)若平面与平面的交线为,求证:.
已知为函数图象上一点,为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数的取值范围;(2)当时,不等式恒成立,求实数的取值范围;(3)求证:
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.(1)求双曲线的方程;(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
设是各项都为正数的等比数列,是等差数列,且,,.(1)求数列,的通项公式;(2)设数列的前项和为,求数列的前项和.
如图,在底面为平行四边形的四棱柱中,底面,,,.(1)求证:平面平面;(2)若,求四棱锥的体积.
某小组共有、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:
(1)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率;(2)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.