,则称为与在上的一个“分界函数”.如,则称一个“分界函数”。(1)求证:是和在上的一个“分界函数”;(2)若和在上一定存在一个“分界函数”,试确定实数的取值范围.
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2). (1)求V关于θ的函数表达式; (2)求的值,使体积V最大; (3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在三棱柱中,侧面为菱形, 且,,是的中点. (1)求证:平面平面; (2)求证:∥平面.
已知矩阵,,计算.
设函数. (1)求的最小正周期和值域; (2)在锐角△中,角的对边分别为,若且,,求和.
已知函数处取得极值2 (1)求函数的表达式; (2)当满足什么条件时,函数在区间上单调递增? (3)若为图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围