在设内角A,B,C的对边分别为,向量,向量,若(1)求内角A的大小;(2)若且求的面积
设全集为R,集合,. (1)求; (2)已知,若,求实数的取值范围.
设数列的前项和为,已知,,. (1)求数列的通项公式; (2)证明:对一切正整数,有.
(本小题满分13分)已知椭圆:()的焦距为,且过点. (1)求椭圆的方程和离心率; (2)设()为椭圆上一点,过点作轴的垂线,垂足为.取点,连 结,过点作的垂线交轴于点,点是点关于轴的对称点.试判断直线与椭圆的位置关系,并证明你的结论.
(本小题满分13分)已知函数. (1)求函数的最大值; (2)若函数与有相同极值点, (ⅰ)求实数的值; (ⅱ)若对于,不等式恒成立,求实数的取值范围.
(本题满分12分)如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=. (1)若M为PA中点,求证:AC∥平面MDE; (2)求直线PA与平面PBC所成角的正弦值; (3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?