(本题满分12分)如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.(1)若M为PA中点,求证:AC∥平面MDE;(2)求直线PA与平面PBC所成角的正弦值;(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?
1)设函数,求的最小值;(2)设正数满足,求证
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(1)求数列的通项公式;(2)若b=a 4(), B是数列{b}的前项和, 求证:不等式 B≤4B,对任意皆成立.(3)令
如图,在直角坐标系中,O为坐标原点,直线⊥x轴于点C, ,,动点到直线的距离是它到点D的距离的2倍 (I)求点的轨迹方程;(II)设点K为点的轨迹与x轴正半轴的交点,直线交点的轨迹于两点(与点K均不重合),且满足 求直线EF在X轴上的截距;(Ⅲ)在(II)的条件下,动点满足,求直线的斜率的取值范围
已知函数() (Ⅰ) 当时,求函数的单调区间;(Ⅱ) 若不等式对恒成立,求a的取值范围
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.(1)求证:E、F、D、B共面;(2)求点A1到平面的BDEF的距离;(3)求直线A1D与平面BDEF所成的角.