如图,在直角坐标系中,O为坐标原点,直线⊥x轴于点C, ,,动点到直线的距离是它到点D的距离的2倍 (I)求点的轨迹方程;(II)设点K为点的轨迹与x轴正半轴的交点,直线交点的轨迹于两点(与点K均不重合),且满足 求直线EF在X轴上的截距;(Ⅲ)在(II)的条件下,动点满足,求直线的斜率的取值范围
(本小题8分)已知三棱锥A—BCD及其三视图如图所示.(1)求三棱锥A—BCD的体积与点D到平面ABC的距离;(2)求二面角 B-AC-D的正弦值.
(本小题8分)已知圆C: 及直(1)证明:不论m取何值,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长最短时的直线方程.
(本小题8分)已知线段AB的两个端点A、B分别在x轴和y轴上滑动,且∣AB∣=2.(1)求线段AB的中点P的轨迹C的方程;(2)求过点M(1,2)且和轨迹C相切的直线方程.
(本小题8分) 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,若F,E分别为PC,BD的中点,求证:(l)EF∥平面PAD;(2)平面PDC⊥平面PAD
设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)求函数的极值点.