如图所示,在三棱柱中,,,点分别是的中点. (1)求证:平面∥平面;(2)求证:平面⊥平面;(3)若,,求异面直线所成的角。
(本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AB∥CD,BA⊥AD,且CD=2AB. (1)若AB=AD=,直线PB与CD所成角为, ①求四棱锥P-ABCD的体积; ②求二面角P-CD-B的大小; (2)若E为线段PC上一点,试确定E点的位置,使得平面EBD垂直于平面ABCD,并说明理由.
(本小题满分12分) 如图,正方体中, E是的中点. (1)求证:∥平面AEC; (2)求与平面所成的角.
(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出 (1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点. (Ⅰ)求椭圆C的方程; (Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.
已知为双曲线的左、右焦点. (Ⅰ)若点为双曲线与圆的一个交点,且满足,求此双曲线的离心率; (Ⅱ)设双曲线的渐近线方程为,到渐近线的距离是,过的直线交双曲线于A,B两点,且以AB为直径的圆与轴相切,求线段AB的长.