(本小题满分12分)已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期为π,且图象上有一个最低点为M.(1)求f(x)的解析式;(2)求函数y=f(x)+f的最大值及对应x的值.
(本小题满分13分)(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为几种?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?
(本小题满分13分)已知定义域为R的函数是奇函数.(1)求a的值;(2)判断的单调性(不需要写出理由);(3)若对任意的,不等式恒成立,求的取值范围.
(本小题满分13分)由0,1,2,3,4,5这六个数字(1)能组成多少个无重复数字的四位数?(2)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25整除的四位数?(4)组成无重复数字的四位数中比4032大的数有多少个?
(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1(1)求的解析式;(2)求函数的单调递减区间及值域..
(本小题满分10分)已知.(1)设;(2)如果求实数的值.