(本小题10分)如图,已知抛物线:,过焦点斜率大于零的直线交抛物线于、两点,且与其准线交于点.(Ⅰ)若线段的长为,求直线的方程;(Ⅱ)在上是否存在点,使得对任意直线,直线,,的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.
已知函数.(I)求的单调区间; (II) 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。
已知数列中,(为常数);是的前项和,且是与的等差中项。(I)求;(II)猜想的表达式,并用数学归纳法加以证明。
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
已知函数,且.(I)求函数的解析式;(II)求函数的单调区间和极值.
(本小题满分12分) 已知点列、、…、(n∈N)顺次为一次函数图像上的点,点列、、…、(n∈N)顺次为x轴正半轴上的点,其中(0<a<1),对于任意n∈N,点、、构成一个顶角的顶点为的等腰三角形。 (1)数列的通项公式,并证明是等差数列; (2)证明为常数,并求出数列的通项公式; (3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。