一个不透明袋子中装有质地完全相同的乒乓球共4个,分别标有数字1,2,3,4,另一个不透明的袋子中装有质地完全相同的乒乓球共3个,分别标有数字1,2,3.甲、乙两名同学想通过一个游戏来决定谁代表班级参加学校的朗诵比赛。班长给出的游戏规则为:两人分别从两个袋子中摸出一个球,若两个球上的数字之和小于4,则甲去,否则乙去。(1)请你用树状图或列表,列举出两人摸出的球上的数字之和的所有情况。(2)你认为这个游戏规则公平吗?请说明理由。如果不公平,请你修改游戏规则,使游戏公平。
已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示. (1)求点C的坐标,并求出抛物线的函数解析式; (2)抛物线的对称轴被直线l1、抛物线、直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由; (3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标:
有一种产品的质量分成6种不同档次,若工时不变,每天可生产最低档次的产品40件;如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品。 ⑴若最低档次的产品每件利润17元时,生产哪一种档次的产品的利润最大?并求最大利润。 ⑵由于市场价格浮动,生产最低档次的产品每件利润可以从8元到24元不等,那么生产哪种档次的产品所得利润最大?
阅读下面的情境对话,然后解答问题 (1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题? (2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇异三角形,求a:b:c; (3)如图,AB是⊙O的直径,C是上一点(不与点A、B重合),D是半圆的中点,CD在直径AB的两侧,若在⊙O内存在点E使得AE=AD,CB=CE. 1求证:ACE是奇异三角形; 2当ACE是直角三角形时,求∠AOC的度数.
自变量为x的二次函数 (1),求函数值y的最大值与最小值;并分别指出所对应的自变量x的值; (2)当a变化时,该二次函数图象是否经过定点?若是,请求出定点坐标;若不是,请说明理由; (3)若该二次函数图象与x轴有两个不同的交点,而且两交点的横坐标均小于-1,求a的取值范围。
如图1,有一张菱形纸片ABCD,,. (1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长. (2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形. (注:上述所画的平行四边形都不能与原菱形全等) 周长为__________周长为__________