如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,且∠B =40º, ∠C =60º,求∠CAD、∠EAD的度数。
如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.(1)求证:AE平分∠BAC;(2)若AD=2,EC=,∠BAC=600,求⊙O的半径.
如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,过D作DE⊥AC,交AC于E,求证:DE是⊙O的切线.
黄商超市以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件.超市为增加销售量,决定降价销售,根据市场调查,单价第降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,超市将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)完成下表(不化简)
(2)如果超市希望通过销售这批T恤获利9000元,那么第二个月的单价是多少元?
解下列方程(1)4x²-4x+1=0 (2)(3x+2)²=(5-2x)²
已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在轴上,直角顶点A在轴的正半轴上,A(0,2),B(-1,0)。(1)求点C的坐标并求过A、B、C三点的抛物线的解析式(2)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.;(3)在抛物线的对称轴上是否存在点Q,使△QAC是以AC为腰的等腰三角形?如果存在,直接写出Q点的坐标;如果不存在,请说明理由;