如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.
现有点数为2、3、4、5的四张牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率是多少?(列表或画树状图)
计算:⑴ +(3-π)0-2sin60° ⑵ ×+(-1)2
如图,在中,AB=AC=10cm, BC=16cm,DE=4cm.线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时停止运动.过点E作EF∥AC交AB于点F,连接DF,设运动的时间为t秒(t≥0).(1)用含t的代数式表示线段EF的长度为 ; (2)在运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,试说明理由.(3)设M、N分别是DF、EF的中点,请直接写出在整个运动过程中,线段MN所扫过的图形的面积.
销售甲、乙两种商品所得利润分别为y1(万元)和y2(万元),它们与投入资金u的关系式为y1=,y2=u.如果将3万元资金投入经营甲、乙两种商品,其中对甲商品的投资为x(万元).(1)求经营甲、乙两种商品的总利润y(万元)与x的函数关系式,并直接写出自变量x的取值范围;(2)设=t,试写出y关于t的函数关系式,并求出经营甲、乙两种商品各投入多少万元时使得总利润最大.
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠ABC=∠CAD.(1)若∠ABC=20°,则∠OCA的度数为 ;(2)判断直线AD与⊙O的位置关系,并说明理由;(3)若OD⊥AB,BC=5,AB=8,求⊙O的半径.