选修4-5:不等式选讲已知函数.(Ⅰ)若不等式的解集为,,求证:.(Ⅱ)若在(Ⅰ)的条件下,存在实数t,使得成立,求实数m的取值范围.
设不等式组所表示的平面区域为,记内的整点(横坐标、纵坐标为整数的点)的个数是.(1)求a1,a2的值及数列的通项公式;(2)设,设为数列的前n项和,求;(3)设,求证:
已知椭圆为其左、右焦点,A为右顶点,l为左准线,过的直线与椭圆相交于P,Q两点,且有(1)求椭圆C的离心率e的最小值;(2),求证:M,N两点的纵坐标之积是定值。
函数在x=α处取得极小值,在x=β处取得极大值,且α2=β(1)求α的值;(2)求函数在上的最大值g(t)。
如图,在正三棱锥中,底面边长是2,D是BC的中点,M在BB1上,且.(1)求证:; (2)求三棱锥的体积;(3)求二面角的余弦值.
为了更好地服务于2010年世博会,上海某酒店随机地对最近入住的名旅客进行服务质量问卷调查,把旅客对住宿的舒适满意度与价格满意度分为五个等级:“1级(很不满意)”、“2级(不满意)”、“3级(一般)”、“4级(满意)”、“5级(很满意)”其结果如表所示,若在这个样本中,任选一人,其舒适度为,价格满意度.(1)根据样本中的数据求P(y=5)及P(x≥3且y=3)的值;(2)若的期望值为,求a、b、c的值;(3)求该人在对价格满意(满意度不低于3)的条件下对舒适度也满意的概率.