已知动圆过定点P(1,0),且与定直线相切,点C在上.(1)求动圆圆心的轨迹M的方程;(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点,①求线段AB的长;②问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(1)若,求的最大值。 (2)为何值时,直线和曲线有两个公共点。
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点. (1)求双曲线C的方程; (2)若,求实数k值.
如图,四面体ABCD中,O、E分别是BD、BC的中点 (I)求证:平面BCD; (II)求异面直线AB与CD所成角的余弦值; (III)求点E到平面ACD的距离。
设函数(1)设的内角,且为钝角,求的最小值; (2)设是锐角的内角,且求的三个内角的大小和AC边的长。
一个多面体的直观图和三视图如下:(其中分别是中点) (1)求证:平面; (2)求多面体的体积.