某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比。已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图). (1)分别写出两种产品的收益与投资的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
如图甲,设正方形的边长为,点分别在上,并且满足,如图乙,将直角梯形沿折到的位置,使点在平面上的射影恰好在上.(1)证明:平面;(2)求平面与平面所成二面角的余弦值.
市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路、、上下班时间往返出现拥堵的概率都是,道路、上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.(1)求李生小孩按时到校的概率;(2)李生是否有八成把握能够按时上班?(3)设表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求的均值.
在平面直角坐标系中,以为始边,角的终边与单位圆的交点在第一象限,已知.(1)若,求的值;(2)若点横坐标为,求.
已知数列{}的前项和为(为常数,N*).(1)求,,;(2)若数列{}为等比数列,求常数的值及;(3)对于(2)中的,记,若对任意的正整数恒成立,求实数的取值范围.
已知向量=(,1),=(,1),R.(1)当时,求向量 +的坐标;(2)若函数|+|2为奇函数,求实数的值.