(本小题满分13分)在等比数列中,.(1)求等比数列的通项公式;(2)若等差数列中,,求等差数列的前项的和,并求的最大值.
数集A满足条件:若,则.①若2,则在A中还有两个元素是什么;②若A为单元集,求出A和.
设函数定义在R上,对任意实数m、n,恒有且当(1)求证:f(0)=1,且当x<0时,f(x)>1;(2)求证:f(x)在R上递减。
若二次函数满足。(1) 求的解析式;(2) 若在区间[-1,1]上不等式>2x+m恒成立,求实数m的取值范围。
我们为了探究函数 的部分性质,先列表如下:
请你观察表中y值随x值变化的特点,完成以下的问题.首先比较容易的看出来:此函数在区间(0,2)上是递减的;(1)函数在区间 上递增.当 时, .(2)请你根据上面性质作出此函数的大概图像;(3)证明:此函数在区间上(0,2)是递减的.
一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?并求出此时的残料面积。