(本小题满分14分)已知椭圆C : , 经过点P,离心率是.(1)求椭圆C的方程;(2)设直线与椭圆交于两点,且以为直径的圆过椭圆右顶点,求证:直线l恒过定点.
某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.) (1)设室内,室外温度均分别为,,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用,及表示); (2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?
在△ABC中,角,,所对的边分别为,,c.已知. (1)求角的大小; (2)设,求T的取值范围.
如图,在四棱锥中,底面是矩形,四条侧棱长均相等. (1)求证:平面; (2)求证:平面平面.
设函数,. (1) 解不等式; (2) 设函数,且在上恒成立,求实数的取值范围.
在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为(为参数). (1) 求曲线的直角坐标方程以及曲线的普通方程; (2) 设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.