(本小题满分10分)某校高一年级开设,,,,五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
(本小题满分12分) 已知数列和等比数列,的前n项和为,, 且满足,; (1)求数列的通项公式和等比数列的通项公式; (2)求数列的前n项和与等比数列的前n项和。
(本小题满分14分) 设函数. (Ⅰ)当时,求的极值; (Ⅱ)当时,求的单调区间; (Ⅲ)若对任意及,恒有 成立,求的取值范围.
(本小题满分14分) 数列{}、{}的前n项和分别为,,且=1(n∈N*)。 (1)证明数列{}是等比数列; (2)若数列{}满足:,且(n∈N*),求证:
(本题满分13分) 甲船在A处观察到乙船在它的北偏东方向的B处,两船相距a 海里,乙船正向北行驶,若甲船速度是乙船速度的倍,问甲船应取什么方向前进才能在最短时间内追上乙船,此时乙船行驶多少海里?
(本小题满分13分) 设函数. (Ⅰ)求的最小正周期. (Ⅱ)若函数与的图像关于直线对称,求当时的最大值.