(本小题满分10分)某校高一年级开设,,,,五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
(本小题满分12分)某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组。(1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数; (2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
(本小题满分12分)已知函数,且满足,(1)求的值;(2)求的最大值.
(本小题满分14分)已知函数( 是自然对数的底数),.(1)若,求的极值;(2)对任意证明:;(3)对任意都有成立,求实数的取值范围.
(本小题满分13分)已知定点,,定直线:,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交于、两点,直线、与直线分别相交于、两点.(1)求的方程;(2)以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.
(本小题满分12分)已知数列为等差数列,其中.(1)求数列的通项公式;(2)若数列满足,为数列的前项和,当不等式()恒成立时,求实数的取值范围.