(1)已知,求的值;(2)已知为第二象限角,化简.
已知点)都在函数的图象上. (1)若数列是等差数列,求证数列为等比数列; (2)若数列的前项和为=,过点的直线与两坐标轴所围成三角 形面积为,求使对恒成立的实数的取值范围.
已知函数,函数的图像与函数的图像关于直线对称.(1)求函数的解析式;(2)若函数在区间上的值域为,求实数的取值范围;(3)设函数,试用列举法表示集合.
已知等差数列中,公差,其前项和为,且满足,.(1)求数列的通项公式;(2)设由()构成的新数列为,求证:当且仅当时,数列是等差数列;(3)对于(2)中的等差数列,设(),数列的前项和为,现有数列,(),是否存在整数,使对一切都成立?若存在,求出的最小值,若不存在,请说明理由.
某公园举办雕塑展览吸引着四方宾客.旅游人数与人均消费(元)的关系如下: (1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多? (2)若公园每天运营成本为万元(不含工作人员的工资),还要上缴占旅游收入20%的税收,其余自负盈亏.目前公园的工作人员维持在40人.要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?(注:旅游收入=旅游人数×人均消费)
已知函数,、是图像上两点.(1)若,求证:为定值;(2)设,其中且,求关于的解析式;(3)对(2)中的,设数列满足,当时,,问是否存在角,使不等式…对一切都成立?若存在,求出角的取值范围;若不存在,请说明理由.