某工厂生产一种产品的原材料费为每件40元,若用表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件元,又该厂职工工资固定支出12500元。(1)把每件产品的成本费(元)表示成产品件数的函数,并求每件产品的最低成本费;(2)如果该厂生产的这种产品的数量不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价与产品件数有如下关系:,试问生产多少件产品,总利润最高?总利润最高为多少?(总利润总销售额总成本)
(本小题满分15分)已知.(I)如果函数的单调递减区间为,求函数的解析式;(II)在(Ⅰ)的条件下,求函数y=的图像在点处的切线方程;(III)若不等式恒成立,求实数的取值范围.
(本小题14分)已知数列的前项和为,且,数列为等差数列,且公差, (1)求数列的通项公式 (2)若成等比数列,求数列的前项和
如图,已知平面,∥,是正三角形,且.(1)设是线段的中点,求证:∥平面; (2)求直线与平面所成角的余弦值.
如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,. (1)若,求的值;(2)设函数,求的值域.
22.已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5. (Ⅰ)求抛物线C的方程; (Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
(Ⅲ)过A、B分别作抛物C的切线且交于点M,求与面积之和的最小值.