用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面; B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
(1)计算并观察下列各式: ; ; ;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.( )=;(3)利用你发现的规律计算:= (4)利用该规律计算:2().(5)求2()的个位数.
两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.
某商场计划拨款9万元购进50台电视机。已知该厂家生产三种不同型号的电视机,出厂价分别是甲种每台1500,乙种每台2100元,丙种每台2500元。(1) 若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元。在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,商场应选择哪种进货方案?
(1)画图,已知线段a和锐角∠α,求作Rt△ABC,使它的一边为a,一锐角为∠α(不写作法,要保留作图痕迹,作出其中一个满足条件的直角三角形即可).(2)回答问题:①满足上述条件的大小不同的共有多少种.②若∠α=30°,求最大的Rt△ABC的面积.
如图,AE、AH分别为△ABC的角平分线和高,∠B=∠BAC,∠C=30°,求∠BAE、∠HAE的度数.