某商场计划拨款9万元购进50台电视机。已知该厂家生产三种不同型号的电视机,出厂价分别是甲种每台1500,乙种每台2100元,丙种每台2500元。(1) 若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元。在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,商场应选择哪种进货方案?
(本题5分)先化简,再求值:a3•(﹣b3)2 +(a b2)3 ,其中a=,b=.
(本题4分)正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′.(2)△A′B′C′的面积为___________.(3)若连接AA′,CC′,则这两条线段之间的关系是__ _.
(本题满分20分,每小题5分)计算:(1)a2•a4+(﹣a2)3 (2)(3)(-3)0+()-1+(-2)3×2-4 (4)
已知,如图在平面直角坐标系中,S△ABC=30,∠ABC =450,BC=12,求△ABC三个顶点的坐标.
(1)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=900,△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?