(本小题满分13分)函数部分图象如图所示.(Ⅰ)求的最小正周期及解析式;(Ⅱ)设,求函数在区间上的最大值和最小值.
已知数列的前项和为,点均在二次函数的图象上.(1)求数列的通项公式;(2)设,求数列的前项和
(本题10分)已知直线(1)若直线的斜率等于2,求实数的值;(2)若直线分别与x轴、y轴的正半轴交于A、B两点,O是坐标原点,求△AOB面积的最大值及此时直线的方程.
(本题13分)已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥平面ABCD.(1)求证:PF⊥FD;(2)设点G在PA上,且EG//平面PFD,试确定点G的位置.
(本小题满分13分)数列{}的前项和为,是和的等差中项,等差数列{}满足,.(1)求数列,的通项公式;(2)若,求数列的前项和
(本题10分)已知直线的方程为, (1)若直线的斜率是;求的值; (2)若直线在轴、轴上的截距之和等于;求的值; (3)求证:直线恒过定点。