如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.(1)求证:平面MOE∥平面PAC; (2)求证:平面PAC⊥平面PCB;(3)设二面角M-BP-C的大小为θ,求cosθ的值.
.(本小题满分12分) 已知向量,且 (1)求的解析式和它的最小正周期; (2)求函数的值域。
(已知二次函数满足:对任意实数x,都有,且当(1,3)时,有成立。 (1)证明:; (2)若的表达式; (3)在(2)的条件下,设,,若图上的点都位于直线的上方,求实数m的取值范围。
(某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站多少公里处?
(已知抛物线y=x2+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.
某企业生产A、B两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表: 已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A、B两种产品各多少吨,才能获得最大利润?