(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为 ;②线段AD,BE之间的数量关系为 ;(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请求出点A到BP的距离.
先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,.
已知二次函数的图像经过点A(6,0)、B(-2,0)和点C(0,-8) (1)求该二次函数的解析式; (2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,求K的坐标; (3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线按O-A-C的路线运动,点Q以每秒8个单位长度的速度沿折线按O-C-A的路线运动,当P、Q两点相遇时它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S; ①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由; ② 请求出S关于t的函数关系式,并写出自变量t的取值范围;
备用图
如图,在△中,, 底边BC上的高AD=12,tan C = 2,如果将△沿直线l翻折后,点刚好落在边的中点E处,直线l与边AB交于点F,与边交于点H,求BH的长.
已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.
如图,某学校综合楼入口处有一斜坡AB,坡角为12°,AB长为3 m.施工队准备将斜坡建成三级台阶,台阶高度均为h cm,深度均为30 cm,设台阶的起点为C.(1)求AC的长度;(2)每级台阶的高度h.(参考数据:sin12°≈0.20,cos12°≈0.97,tan12°≈0.21,结果保留整数)