知识是用来为人类服务的,我们应该把它们用于有意义的方.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题。情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由: 。你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
计算:
已知抛物线经过点A(,0)、B(m,0)(m>0),且与y轴交于点C. ⑴求a、b的值(用含m的式子表示) ⑵如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示); ⑶在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与相似,求m的值
为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元. 该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示. (1)求月销售量(万件)与销售单价(元)之间的函数关系式; (2)当销售单价定为50元时,为保证公司月利润达到5万元 (利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人? (3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?
已知△ABC ,D、E、F分别是AB、AC、BC上的点。且DE∥BC, EF∥AB.求证:
已知如图,AB和DE是直立在地面上的两根立柱,AB=10m, 某一时刻AB在太阳光下的投影BC=6m. (1)请你在图中画出此时DE在阳光下的投影. (2)在测量AB的投影时,同时测量出DE在阳光下的投影长为3m,计算DE的长.