为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)
如图,某校数学兴趣小组的同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为45°,向前走50米到达D处,在D处测得点A的仰角为60°,求建筑物AB的高度.
已知:如图,在△ABC中,∠A=30°,∠C=105°,AC= 4,求AB和BC的长.
如图,二次函数的图象与x轴交于A、B 两点,与轴交于点C,且点B的坐标为(1,0),点C的坐标为,一次函数的图象过点A、C. (1)求二次函数的解析式; (2)求二次函数的图象与x轴的另一个交点A的坐标; (3)根据图象写出时,的取值范围.
如图,函数的图象与反比例函数的图象的一个交点为A(1,m),点B(n,1)在反比例函数的图象上. (1)求反比例函数的解析式; (2)求n的值; (3)若P是轴上一点,且满足△POB的面积为6,求P点的坐标.
已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E. (1)求证:BC=BD; (2)若BC=15,AD= 20,求AB和CD的长.