推理能力都很强的甲、乙、丙站成一列,丙可以看见甲、乙,乙可以看见甲但看不见丙,甲看不见乙、丙.现有5顶帽子,3顶白色,2顶黑色.老师分别给每人戴上一顶帽子(在各自不知道的情况下).老师先问丙是否知道头上的帽子颜色,丙回答说不知道;老师再问乙是否知道头上的帽子颜色,乙也回答说不知道;老师最后问甲是否知道头上的帽子颜色,甲回答说知道.请你说出甲戴了什么颜色的帽子,并写出推理过程.
热气球的探测器显示,从热气球 A 处看大楼 BC 顶部 C 的仰角为 30 ° ,看大楼底部 B 的俯角为 45 ° ,热气球与该楼的水平距离 AD 为60米,求大楼 BC 的高度.(结果精确到1米,参考数据: 3 ≈ 1 . 73 )
化简: ( 3 a - 2 - 1 a + 2 ) · ( a 2 - 4 ) .
(1)计算: 12 - 4 sin 60 ° + ( 2020 - π ) 0 .
(2)解不等式组: x + 2 > - 1 , 2 x - 1 3 ⩽ 3 ·
“六一”儿童节,游乐场举办摸牌游戏.规则如下:桌上放有4张扑克牌,分别为红心2、红心5、黑桃8、梅花 K ,将扑克牌洗匀后背面朝上,每次从中随机摸出一张牌,若摸到红心,则获得1份奖品;否则,就没有奖品.同时规定:6岁以下(不含6岁)儿童每人有2次摸牌机会(每次摸出后放回并重新洗匀);6岁以上(含6岁)儿童每人只有1次摸牌机会.
(1)已知小红今年5岁,求小红获得2份奖品的概率(请用“画树状图”或“列表”等方法写出分析过程);
(2)小明今年6岁,摸牌获得了1份奖品,游乐场工作人员表示可赠送一次机会,让小明在余下的3张牌中任意摸出一张,如果摸到红心,则可再获1份奖品;如果没摸到红心,那么将收回小明已获奖品.请你运用概率知识帮小明判断是否要继续摸牌,并说明理由.
如图,在 ▱ ABCD 中,点 E 、 F 分别在边 AD 、 BC 上,且 DE = BF ,直线 EF 与 BA 、 DC 的延长线分别交于点 G , H .求证:
(1) ΔDEH ≅ ΔBFG ;
(2) AG = CH .