如图,点 P 为抛物线 y = 1 4 x 2 上一动点.
(1)若抛物线 y = 1 4 x 2 是由抛物线 y = 1 4 ( x + 2 ) 2 − 1 通过图象平移得到的,请写出平移的过程;
(2)若直线 l 经过 y 轴上一点 N ,且平行于 x 轴,点 N 的坐标为 ( 0 , − 1 ) ,过点 P 作 PM ⊥ l 于 M .
①问题探究:如图一,在对称轴上是否存在一定点 F ,使得 PM = PF 恒成立?若存在,求出点 F 的坐标:若不存在,请说明理由.
②问题解决:如图二,若点 Q 的坐标为 ( 1 , 5 ) ,求 QP + PF 的最小值.
在的方格纸中,点,,都在格点上,按要求画图:
(1)在图1中找一个格点,使以点,,,为顶点的四边形是平行四边形.
(2)在图2中仅用无刻度的直尺,把线段三等分(保留画图痕迹,不写画法).
如图,在直角坐标系中,已知点,等边三角形的顶点在反比例函数的图象上.
(1)求反比例函数的表达式.
(2)把向右平移个单位长度,对应得到△当这个函数图象经过△一边的中点时,求的值.
如图,在矩形中,点,在对角线.请添加一个条件,使得结论“”成立,并加以证明.
小明解答“先化简,再求值:,其中.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.
如图,在平面直角坐标系中,直线分别交轴、轴于点,,正方形的顶点在第二象限内,是中点,于点,连结.动点在上从点向终点匀速运动,同时,动点在直线上从某一点向终点匀速运动,它们同时到达终点.
(1)求点的坐标和的长.
(2)设点为,当时,求点的坐标.
(3)根据(2)的条件,当点运动到中点时,点恰好与点重合.
①延长交直线于点,当点在线段上时,设,,求关于的函数表达式.
②当与的一边平行时,求所有满足条件的的长.