某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)求异面直线PA与DE所成角的大小;(2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
如图, 在直三棱柱中,,,点是的中点,(1)求证:;(2)求证:;(3)求直线与平面所成角的正切值.
已知关于的方程.(1)若方程表示圆,求实数的取值范围 ;(2)若圆与直线相交于两点,且,求的值
已知向量(1)求和;(2)为何值时,向量与垂直;(3)为何值时,向量与平行。
已知=(2asin2x,a),=(-1,2sinxcosx+1),O为坐标原点,a≠0,设f(x)=·+b,b>a。(1)若a>0,写出函数y=f(x)的单调递增区间;(2)若函数y=f(x)的定义域为[,π],值域为[2,5],求实数a与b的值。