某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(Ⅰ)求此运动员射击的环数的平均数;(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(m,n).求“”的概率.
如图所示,已知正方形ABCD的边长为2,AC∩BD=O,将正方形ABCD沿对角线BD折起,得到三棱锥A—BCD。(1)求证:平面AOC⊥平面BCD;(2)若三棱锥A—BCD的体积为,求AC的长。
某电视台的一个智力游戏节目中,有一道将中国四大名著《三国演义》、《水浒传》、《西游记》、《红楼梦》与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线,每连对一个得2分,连错得-1分,某观众只知道《三国演义》的作者是罗贯中,其它不知道随意连线,将他的得分记作ξ。(1)求该观众得分ξ为负数的概率;(2)求ξ的分布列及数学期望。
已知在△ABC中,角A、B、C所对的边分别为a,b,c,且。(1)求角B的大小;(2)设向量取最大值时,tanC的值。
已知方程。求使方程有两个大于1的实数根的充要条件。
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(1)证明 平面;(2)证明平面EFD;(3)求二面角的大小.