某种盆栽花卉每盆的盈利与每盆种植花卉的株数有关:已知每盆种植3株时,平均每株可盈利4元;若每盆多种植1株,则平均每株盈利要减少0.5元.为使每盆的盈利达到15元,则每盆应种植花卉多少株?
如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D. (1)请直接写出D点的坐标. (2)求二次函数的解析式. (3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2). (1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形. (2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形. (3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
先化简,再求值:﹣÷,其中x=4cos60°+1.
如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为. (1)求抛物线的函数表达式及其顶点的坐标; (2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大; (3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由. 图①图②
已知,在矩形中,连接对角线,将绕点顺时针旋转得到,并将它沿直线向左平移,直线与交于点,连接,. (1)如图①,当,点平移到线段上时,线段有怎样的数量关系和位置关系?直接写出你的猜想; (2)如图②,当,点平移到线段的延长线上时,(1)中的结论是否成立,请说明理由; (3)如图③,当时,对矩形进行如已知同样的变换操作,线段有怎样的数量关系和位置关系?直接写出你的猜想. 图①图②图③