已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.
解方程(每小题2分,共12分)(1) ;(2)
(本题8分)把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来. -3.5, 0, 2, -2 , 0.5.
如图,在平面直角坐标系中,以点M(0,3)为圆心、5为半径的圆与x轴交于点A、B(点A在点B的左侧),与y轴交于点C、D(点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.(1)求点A、B两点的坐标.(2)当抛物线的对称轴与⊙M相切时, 求此时抛物线的解析式.(3)连结AE、AC、CE,若.①求点E坐标;②在直线BC上是否存在点P,使得以点B、M、P为顶点的三角形和△ACE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.
国家推行“节能减排\低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元,花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等,销售中发现A型汽车的每周销量(台)与售价(万元/台)满足函数关系式,B型汽车的每周销量(台)与售价万元/台)满足函数关系式.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的人售价高2万元/台,设B型汽车售价为万元/台.每周销售这两种车的总利润为万元,求与的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?
有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果;(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.