已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.
解不等式组 x − 3 ( x − 2 ) ⩾ 4 2 x − 1 5 < x + 1 2 ,并将它的解集在数轴上表示出来.
如图,已知 ⊙ A 的圆心为点 ( 3 , 0 ) ,抛物线 y = a x 2 − 37 6 x + c 过点 A ,与 ⊙ A 交于 B 、 C 两点,连接 AB 、 AC ,且 AB ⊥ AC , B 、 C 两点的纵坐标分别是2、1.
(1)请直接写出点 B 的坐标,并求 a 、 c 的值;
(2)直线 y = kx + 1 经过点 B ,与 x 轴交于点 D .点 E (与点 D 不重合)在该直线上,且 AD = AE ,请判断点 E 是否在此抛物线上,并说明理由;
(3)如果直线 y = k 1 x − 1 与 ⊙ A 相切,请直接写出满足此条件的直线解析式.
如图,在矩形 ABCD 中, AB = 4 , BC = 3 , AF 平分 ∠ DAC ,分别交 DC , BC 的延长线于点 E , F ;连接 DF ,过点 A 作 AH / / DF ,分别交 BD , BF 于点 G , H .
(1)求 DE 的长;
(2)求证: ∠ 1 = ∠ DFC .
我市某超市销售一种文具,进价为5元 / 件.售价为6元 / 件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为 x 元 / 件 ( x ⩾ 6 ,且 x 是按0.5元的倍数上涨),当天销售利润为 y 元.
(1)求 y 与 x 的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过 80 % ,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
如图,在 Rt Δ ABC 中, ∠ C = 90 ° , D 为 BC 上一点, AB = 5 , BD = 1 , tan B = 3 4 .
(1)求 AD 的长;
(2)求 sin α 的值.