已知关于x的方程x2+ax+a﹣2=0。(1)若该方程的一个根为1,求a的值及该方程的另一根(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
正方形ABCD和正方形DEFG如图①放置,保持正方形ABCD不动,将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<180°)(1)当0°<α<90°时,如图②,连结AE、CG,则AE:CG= ;(2)当90°<α<180°时,如图③,连结AE、CG,(1)中的结论还成立吗?请说明理由;(3)将图③中的正方形ABCD和正方形DEFG分别改为矩形ABCD和矩形DEFG,且使AD=4,CD=6,ED=2,GD=3,如图④,求AE:CG的值.
如图,黎叔叔想用60m长的篱笆靠墙MN围成一个矩形花圃ABCD,已知墙长MN=30m.(1)能否使矩形花圃ABCD的面积为400m2?若能,请说明围法;若不能,请说明理由.(2)请你帮助黎叔叔设计一种围法,使矩形花圃ABCD的面积最大,并求出最大面积.
如图,双曲线与直线相交于点A(4,m)、B.(1)求m的值及直线的函数表达式;(2)求△AOB的面积;(3)当x为何值时,?(直接写出答案)
如图所示,在A岛周围25海里的范围内有暗礁.一轮船由西向东航行到B处时,发现A岛在北偏东60°方向,轮船继续前行20海里,到达C处,发现A岛在北偏东45°方向,该船若不改变航向继续前行,有无触礁的危险?(结果精确到0.1海里)
某公司组织员工到一博览会的A、B、C、D、E五个展馆参观,公司所购买的门票种类、数量绘制成的条形统计图和扇形统计图如图所示:根据图中信息解答下列问题:(1)该公司共组织了 名员工参观博览会;扇形统计图中的m= ,n= ;(2)补全条形统计图;(3)求扇形统计图中表示参观B馆的扇形圆心角的度数;(4)从该公司参观博览会的员工中任选一名,选中参观E馆员工的概率是多少?