如图,圆心角∠AOB=120°,弦AB=2cm.(1) 求⊙O的半径r;(2) 求劣弧的长(结果保留).
(1)计算:+(π-3)0--cos60°+tan30°(2)已知x是一元二次方程的实数根,求代数式:的值.
在平面直角坐标系中,O是坐标原点,直角梯形AOCD的顶点A的坐标为(0,),点D的坐标为(1,),点C在轴的正半轴上,过点O且以点D为顶点的抛物线经过点C,点P为CD的中点.(1)求抛物线的解析式及点P的坐标;(2) 在轴右侧的抛物线上是否存在点Q,使以Q为圆心的圆同时与轴、直线OP相切.若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由;(3)点M为线段OP上一动点(不与O点重合),过点O、M、D的圆与轴的正半轴交于点N.求证:OM+ON为定值.(4)在轴上找一点H,使∠PHD最大.试求出点H的坐标.
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)矩形有 条面积等分线; (2)如图①,在矩形中剪去一个小正方形,这个图形有 条面积等分线,请画出这个图形的一条面积等分线,并说明理由; (3)如图②,在矩形中剪去两个小正方形,请画出这个图形的一条面积等分线,并说明理由.
如图,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当动点Q到达点D时另一个动点P也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?
某地区一厂工业废气排放量为450万立方米,为改善该地区的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米.如果每期治理中废气减少的百分率相同.(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元.问两期治理完成后共需投入多少万元?