如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上从点A运动到点B,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F. (1)求证:CE=CF; (2)求线段EF的最小值; (3)当点D从点A运动到点B时,线段EF扫过的面积的大小是 .
如图,四边形ABCD是菱形,CE⊥AB,垂足为点E,且CE交对角线BD于点F.若∠A=120°,四边形AEFD的面积为,求EF的值.
在平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),直线y=x+b和线段AB交于点D,DE⊥x轴,垂足为点E,DF⊥y轴,垂足为点F,记w=DF﹣DE,当1≤w≤2时,求b的取值范围.
如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.
在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.
甲、乙两商场春节期间都进行让利酬宾活动.其中,甲商场对一次购物中超过200元后的价格部分打7折,如图所示,表示甲商场在让利方式下y关于x的函数图象,x(单位:元)表示商品原价,y(单位:元)表示购物金额.若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并说明如何选择这两家商场购物更省钱.