(本题共14分)已知函数。(1)求的定义域;(2)判定的奇偶性;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。
已知函数,是的一个极值点. (1)求的单调递增区间; (2)若当时,恒成立,求实数的取值范围.
现有甲、乙两个靶。某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。该射手每次射击的结果相互独立。假设该射手完成以上三次射击。 (Ⅰ)求该射手恰好命中一次的概率; (Ⅱ)求该射手的总得分X的分布列及数学期望EX.
数列中,,用数学归纳法证明:。
在一次购物抽奖活动中,假设某10张奖券中有一等奖卷1张,可获价值50元的奖品;有二等奖卷3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从这10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列和数学期望。
已知函数. (Ⅰ)若为定义域上的单调增函数,求实数的取值范围; (Ⅱ)当时,求函数的最大值; (Ⅲ)当时,且,证明:.