(本小题满分12分)已知数列的前n项和(n为正整数)。(1)令,求证数列是等差数列,并求数列的通项公式;(2)令,求数列的前项和。
(1)计算:;(2)解方程:.
若函数为定义域D上的单调函数,且存在区间,使得当时,函数的值域恰好为,则称函数为上的“正函数”,区间为函数的“正区间”. (1)试判断函数 是否为“正函数”?若是“正函数”,求函数 的“正区间”;若不是“正函数”,请说明理由; (2)设命题:是“正函数”;命题:是“正函数”.若是真命题,求实数的取值范围.
设有关于x的一元二次方程.(1)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若是从区间任取得一个数,是从区间任取的一个数,求上述方程有实根的概率.
(1)已知,.若“”是“”的充分不必要条件,求实数的取值范围;(2)已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.
从参加环保知识竞赛的学生中抽出60名,将其成绩整理后画出的频率分布直方图如下.观察图形,回答下列问题:(1)49.5——69.5这一组的频率和频数分别为多少?(2)估计这次环保知识竞赛成绩的中位数及平均成绩.(精确到小数点后一位)