设椭圆C:的两个焦点是和,且椭圆C与圆有公共点,(1)求a的取值范围;(2)若椭圆上的点到焦点的最短距离为,求椭圆方程.
(本小题满分10分)已知函数(1)试求的值域;(2)设,若对恒有 成立,试求实数的取值氛围。
(本小题满分12分)设函数的定义域为R,当时,,且对任意,都有,且。(1)求的值;(2)证明:在R上为单调递增函数;(3)若有不等式成立,求的取值范围。
(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。(1)求闭函数符合条件②的区间[];(2)判断函数是否为闭函数?并说明理由;(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。
(12分)已知定义域为的单调函数且图关于点对称,当时,.(1)求的解析式;(2)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分12分)函数是定义在上的奇函数,且.(1)求实数的值.(2)用定义证明在上是增函数;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由).