(本小题满分12分)已知其中是自然对数的底 .(1)若在处取得极值,求的值;(2)求的单调区间;(3)设,存在,使得成立,求 的取值范围.
.(本小题满分13分)某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,(,),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.(Ⅰ)已知小曹在第一轮抽奖中被抽中, 求小曹在第二轮抽奖中获奖的概率;(Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望;(Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐是否能达到预期目标.
.(本小题满分13分)已知椭圆的焦点为,, 离心率为,直线与轴,轴分别交于点,.(Ⅰ)若点是椭圆的一个顶点,求椭圆的方程;(Ⅱ)若线段上存在点满足,求的取值范围.
(本小题满分13分)如图,矩形所在的平面与平面垂直,且,,,分别为的中点.(Ⅰ) 求证:直线与平面平行;(Ⅱ)若点在直线上,且二面角的大小为,试确定点的位置.
(本小题满分13分)已知函数在处取得最值. (Ⅰ)求函数的最小正周期及的值;(Ⅱ)若数列是首项与公差均为的等差数列,求的值.
4-5(不等试证明)已知(Ⅰ)若的取值范围;(Ⅱ)若不等式的解集为R,求实数的取值范围。