(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA//平面EDB;(2)求证:PF=PB;(3)求二面角C-PB-D的大小.
如图,在直三棱柱中,,是棱上的动点,是中点,,.(Ⅰ)求证:平面;(Ⅱ)若二面角的大小是,求的长.
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示. (I) 求该班学生参加活动的人均次数; (II)从该班中任意选两名学生,求他们参加活动 次数恰好相等的概率; (III)从该班中任选两名学生,用表示这两人参 加活动次数之差的绝对值,求随机变量的分布列及数学期望.(要求:答案用最简分数表示)学
(本小题满分12分)在中,分别为角的对边,且满足(Ⅰ)求角的大小;(Ⅱ)若,求的最小值.
若函数f(x)=在[1,+∞上为增函数. (Ⅰ)求正实数a的取值范围.(Ⅱ)若a=1,求征:(n∈N*且n ≥ 2 )
已知圆上的动点,点Q在NP上,点G在MP上,且满足.(I)求点G的轨迹C的方程;(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.