(本小题满分13分)设椭圆(a>b>0)的离心率e=,左顶点M到直线的距离d=,O为坐标原点.(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(3)在(2)的条件下,试求△AOB的面积S的最小值.
已知离心率为的双曲线,双曲线的一个焦点到 渐近线的距离是 (1)求双曲线的方程 (2)过点的直线与双曲线交于、两点,交轴于点,当,且时,求直线的方程
( 如图,在五面体中,平面,, (1)求异面直线和所成的角 (2)求二面角的大小 (3)若为的中点,为上一点,当为何值时,平面?
( 某篮球联赛的总决赛在甲、乙两队之间角逐。采用七场四胜制,即有一队胜四场,则此队获胜, 同时比赛结束。在每场比赛中,两队获胜的概率相等。根据以往资料统计,每场比赛组织者可获 门票收入32万元,两队决出胜负后,问: (1)组织者在此次决赛中,获门票收入为128万元的概率是多少? (2)设组织者在此次决赛中获门票收入为,求的分布列及。
已知椭圆的离心率为,短轴的长为2. (1)求椭圆的标准方程 (2)若经过点的直线与椭圆交于两点,满足,求的方程
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的. (1)求袋中原有白球的个数; (2)求取球两次终止的概率 (3)求甲取到白球的概率