(本小题满分13分)已知圆C的方程为:(1)求的取值范围;(2)若圆C与直线交于M、N两点,且,求的值.(3)设直线与圆交于,两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.
(本小题满分10分)已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)确定函数在上的单调性并求在此区间上的最小值.
(本小题满分12分)已知椭圆C :经过点离心率为。(Ⅰ) 求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点。求O到直线l的距离的最小值。
(本小题满分12分)已知函数,(Ⅰ)讨论函数的单调区间和极值点;(Ⅱ)若函数有极值点,记过点与原点的直线斜率为。是否存在使?若存在,求出值;若不存在,请说明理由。
(本小题满分12分)某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
(Ⅰ)李明同学本次数学成绩为103分,求他被抽中的概率;(Ⅱ)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;(Ⅲ)估计该校本次考试的数学平均分。
(本小题满分12分)如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.(Ⅰ)求证:DA⊥平面PAC;(Ⅱ)点G为线段PD的中点,证明CG∥平面PAF;(Ⅲ)求三棱锥A—CDG的体积.