(本小题满分12分)已知等比数列的公比,,是方程的两根.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.
已知椭圆的离心率为,且过点,抛物线的焦点坐标为.(1)求椭圆和抛物线的方程;(2)若点是直线上的动点,过点作抛物线的两条切线,切点分别是,直线交椭圆于两点.(Ⅰ)求证:直线过定点,并求出该定点的坐标;(Ⅱ)当的面积取最大值时,求直线的方程.
已知四棱锥中,,,且底面是边长为1的正方形,是侧棱上的一点(如图所示).(1)如果点在线段上,,且,求的值;(2)在(1)的条件下,求二面角的余弦值.
( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.(2)从该班中任意选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(3)从该班中任意选两名学生,用表示这两人参加活动次数之和,记“函数在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.
( 本小题满分12分) 在中,若,且,(1)求角的大小; (2)求的面积.
(本小题满分1 4分)已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.(1)求椭圆的方程:(2)若过点的直线与椭圆交于不同两点,,试问在轴上是否存在定点,使恒为定值?若存在,求出的坐标及定值;若不存在,请说明理由.