如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜. (1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.
如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4). (1)当t为何值时,PQ∥BC. (2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值. (3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED的形状,并说明理由; (2)若AB=6,BC=8,求四边形OCED的面积.
体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.
(1)购进篮球和排球各多少个? (2)销售6个排球的利润与销售几个篮球的利润相等?
完成下列各题: (1)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:BC="AD." (2)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.
完成下列各题 (1) (2)解不等式组:,并将解集在数轴上表示出来