(本小题12分)A、B两地相距60千米,甲乙两人分别从A、B两地骑车出发,相向而行,甲比乙迟出发20分钟,每小时比乙多行3千米,在甲出发后1小时40分,两人相遇.问甲乙两人每小时各行多少千米?
(1)计算:;
(2)化简求值:,当时,请你选择一个适当的数作为的值,代入求值.
如图,抛物线与轴交于,,,两点,与轴交于点,且.
(1)求抛物线的解析式;
(2)若,,,是抛物线上的两点,当,时,均有,求的取值范围;
(3)抛物线上一点,直线与轴交于点,动点在线段上,当时,求点的坐标.
(1)如图1,菱形的顶点、在菱形的边上,且,请直接写出的结果(不必写计算过程)
(2)将图1中的菱形绕点旋转一定角度,如图2,求;
(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.
下表中给出,,三种手机通话的收费方式.
收费方式
月通话费元
包时通话时间
超时费(元
30
25
0.1
50
100
不限时
(1)设月通话时间为小时,则方案,,的收费金额,,都是的函数,请分别求出这三个函数解析式.
(2)填空:
若选择方式最省钱,则月通话时间的取值范围为 ;
(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.
如图,,点、分别在射线、上,,.
(1)用尺规在图中作一段劣弧,使得它在、两点分别与射线和相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段、围成的封闭图形的面积.