小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.
如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A 作 AB ⊥ y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E .
(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;
(2)连接 OE , BE , AE ,记 △ OBE , △ ADE 的面积分别为 S 1 , S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.
如图,正比例函数 y = x 的图象与反比例函数 y = k x ( x > 0 ) 的图象交于点 A 1 , a .在 △ ABC 中, ∠ ACB = 90 ∘ , CA = CB ,点 C 坐标为 - 2 , 0 .
(1)求 k 的值;
(2)求 AB 所在直线的解析式.
一场数学游戏在两个非常聪明的学生甲、乙之间进行.裁判先在黑板上写出下面的正整数 2 , 3 , 4 ⋯ 2006 ,然后随意擦去一个数.接下来由乙、甲两人轮流擦去其中的一个数(即乙先擦去其中的一个数,然后甲再擦去一个数,如此轮流下去),若最后剩下的两个数互质,则判甲胜;否则,判乙胜.
按照这种游戏规则,求甲获胜的概率(用具体的数字作答).
口袋中有 4 个相同的小球,它们分别写有数字 2 , 3 , 4 , 5 ,从口袋中随机取出两个球,用所得的两个数 a 和 b 构成函数 y = ax - 2 和 y = x + b ,求使这两个函数的交点在直线 x = 2 右侧的概率.
假设有一个正八面体的骰子,八个面上分别写上了 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 这 8 个数字,每一次投掷这个骰子,出现这 8 个数字的机会都是一样的.若将骰子掷三次,依次记录朝上的面上三次出现的数字,设出现的数字中最大的一个用 m 表示,最小的一个用 n 表示.
(1)令 t = m - n ,求 t 的取值范围;
(2)求 t = 3 的概率.