(本小题12分)在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为,且过.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,点,求线段中点的轨迹方程.
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点. (1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°. (1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P-ABCD的体积等于时,求PB的长.
如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.
已知四棱锥PABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点. (1)求证:DE∥平面PFB;(2)已知二面角PBFC的余弦值为,求四棱锥PABCD的体积.